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ABSTRACT 

This paper deals with the implementation of a soft sensor technique namely Extended Kalman Filter (EKF) to 

estimate the state vectors of CSTR process using LabVIEW. The state variables considered are concentration and 

temperature of reactants in the reactor. An extensive simulation study has carried out to assess the performance of EKF 

under various operating conditions and model uncertainties. 
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INTRODUCTION 

In a plant, normally the different state measurements are done using hardware sensor devices. But it has 

inaccuracies due to different disturbances, ageing etc. Thus soft sensor techniques are used which are specifically named as 

state estimation techniques. Estimation is the determination of constants or variables for any system according to a 

performance level and based on the measurements taken from the process. It is an important pre-requisite for the safe and 

economical process operations in a plant analysis.Estimation of states of a Continuous Stirred Tank Reactor, which is 

highly non-linear is important for performance prediction, control application and simulation analysis. CSTR has wide 

applications in the field of petrochemical industries and biological processes. As the continuous measurement of reactant 

concentration and temperature in the reactor is difficult, estimation technique is used. 

EKF, a modified version of Kalman filter is widely used to estimate the states of non-linear systems. EKF is 

extension to non-linear domain through local linearization. It is known for its high convergence rate, which improves the 

transient performance significantly. Additionally, accurate estimation and convergence in steady state requires high-

frequency signals, which are also inherently met by EKFs with the measurement noises included in the model. Also, it 

gives better performance under different process uncertainties. 

The use of LabVIEW for this work is to provide dataflow and graphical programming so that execution time is 

faster than other sequential programming tools. It has built-in functionality for simulation, data acquisition, instrument 

control, measurement analysis, and data presentation. The LabVIEW graphical development environment gives powerful 

tools to create applications without writing any lines of text-based code.The organization of the paper is as follows. Section 

II presents EKF algorithm. Section III describes the process considered for simulation study. Simulation results are 

presented in Section IV and conclusion in Section V. 

EXTENDED KALMAN FILTER 

The EKF implements a Kalman filter for a system dynamics that results from the linearization of the original non-

linear filter dynamics around the previous state estimates. A vital operation performed in the Kalman filter is the 

propagation of a Gaussian Random Variable (GRV) through the system dynamics. In the EKF, the state distribution is 

approximated by a GRV, which is then propagated analytically through the first-order linearization of the nonlinear 

system.  
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The basic framework for the EKF involves estimation of the state of a discrete-time nonlinear dynamic system, 

described as                   

1( , , )k k k kx f x u v                                                  (2.1) 

( , )k k ky h x n                                                                         (2.2) 

Where kx  is unobserved state of the system, 1kx   is the state estimate at time step k-1, ku  is input vector,  ky  is 

observed signal. kv  and kn  are process and measurement noise which are assumed to be gaussian with zero mean having 

covariance Qk and Rk respectively. 

The nonlinear function f ( ) relates the state at time step  

k-1 to state at k. It can be used to compute the predicted state from the previous estimate. The function h ( ) relates the state 

at time step k to measurement at k. h can be used to compute the predicted measurement from the predicted state. 

However, f and h cannot be applied to the covariance directly. Instead a matrix of partial derivatives (the Jacobian) is 

computed. At each time step the Jacobian is evaluated with current predicted states. 

       The EKF has two distinct phases –Predict and Update. The predict phase uses the state estimate from the previous 

time step to produce an estimate of the state at the current time step. In the update phase, measurement information at the 

current time step is used to refine this prediction to arrive at a more accurate state estimate, again for the same current time 

step. 

EKF algorithm is as follows. 

Step 1: Time update equations 

 Predicted state:  

| 1 1| 1ˆ ˆ( , , 0)k k k k kx f x u                    (2.3) 

Predicted estimate covariance:  

| 1 1| 1
T

k k k k k k kF P QP F                      (2.4) 
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                   (2.5) 

Step 2: Measurement update equations 

Innovation or measurement residual: 

| 1ˆ( ,0)k k k kz y h x                       (2.6) 

Measurement covariance: 

| 1
T

k k k k k kS H P H R                      (2.7) 
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                  (2.8) 

Kalman gain: 

1
| 1

T
k k k k kP HK S 

                     (2.9) 

Updated state estimate: 

| | 1ˆ ˆk k k k k kx Kx z                   (2.10) 

Updated covariance estimate: 

| | 1( )k k k k k kP I K H P                   (2.11) 

MATHEMATICAL MODEL OF CSTR 

A perfectly mixed CSTR is shown in figure 1 

 

 

Fig. 1: CSTR 

     By applying material balance and energy balance equations, the resulting mathematical model equations are 

obtained as  

                                                  (3.1) 

 

           (3.2) 

                                                     (3.3) 

The steady state operating data used for simulation study is given in table 1. 
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Table 1: Steady State Operating Data 

Process variable 
Normal 

operating 
condition 

Measured product 

concentration(  CA ) 
0.877mol/lit 

Reactor temperature (T) 324.475 K 

Volumetric flow rate (F) 1000 lit/min 

Reactor volume (V) 1000lit/min 

Feed concentration (  CAf ) 1mol/lit 

Feed temperature (Tf) 350K 

Jacket  temperature (  Tj ) 300K 

Coolant flow rate(qc) 300 lit/min 

Heat of reaction (ΔH) 5e4 cal/mol 

Reaction rate constant(k0) 7.2e10 min-1 

Activation energy term(ΔE) 1044 cal/mol 

Ideal gas constant (R) 8.314 K 

Liquid density(ρ, ρc) 1000 g/lit 

Specific heat capacity            
( Cp,Cpc) 

0.239 
cal/g.K 

 

Both the temperature and concentration of CSTR are influenced by coolant flow rate. Figures 3 and 4 show the 

temperature and concentration responses of the CSTR for the coolant flow rate variation as shown in Figure2. From those 

responses, it can be concluded that the dynamic behaviour of the CSTR process is not the same at different operating 

points and the process is indeed non-linear [1]. 

 

Fig. 2: Variation in Coolant Flow Rate 
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Fig. 3: Variation in Reactant Temperature 

 

Fig. 4: Variation in Reactant Concentration 

SIMULATION RESULTS AND ANALYSIS 

        In all the simulation studies, true state variables are computed by solving nonlinear differential equations using 

ODE solver in LabVIEW. These state variables are estimated using EKF algorithm assuming that the plant gets affected by 

gaussian noise. The resulting true and estimated values for both temperature and concentration under normal operating 

condition are shown in Figure 5 and Figure 6 respectively. 

 

Fig.5: Evolution of True and Estimated Reactor Temperature with Varying Coolant Flow Rate 



16                                           M.Geetha 

 

Fig.6: Evolution of True and Estimated Reactor Concentration with Varying Coolant Flow Rate 

The performance of EKF was studied under following conditions and mean square error (MSE) was used as 

performance index. 

I)  Initial State Mismatch: Simulation studies are conducted with different initial state values and it is observed that the 

performance of the filters is affected mainly due to difference in initial values between process and model. Accordingly, 

simulations are carried out for different initial settings values for both temperature and concentration. 

    II) Model Parameter Mismatch: Due to inaccuracy in measurements and variation in operating conditions, parameters 

of process and model will not be identical and this may lead to poor estimation and hence control. Since the volumetric 

coolant flow rate affects both the temperature and concentration of the reactants simultaneously, it is chosen as the 

parameter to be mismatched between the model and process. Then estimation is carried out by giving up to 30% mismatch 

and the results are compared with by calculating mean square error. After 30%, it fails to converge. 

  III) Process Uncertainties: Studies are also made by assuming different levels of process noise for a fixed measurement 

error. Noises are introduced as standard deviation of 2 in the sampling instant 3 to Gaussian white noise. For a fixed value 

of Q and R, it is obtained that the EKF gives less estimation error. 

Table 2: Comparison of MSE Values 

Condition 
MSE for 

Concentration MSE for Temperature 
Normal operation 0.0063 0.0048 
Initial state mismatch 0.0296 0.0249 
Model parameter mismatches (10%) 1.3131 2.4922 

Model parameter mismatches (30%) 3.8106 4.0132 

Process uncertainties 0.0052 0.0034 

 

CONCLUSIONS 

    In this work a soft sensing technique namely Extended Kalman filter algorithm have been developed and 

implemented for the estimation of temperature and concentration in a CSTR plant using LabVIEW. At first, CSTR 

mathematical model was developed using mass and energy balance concepts. These states are first estimated using EKF 

under normal operating conditions. Then, simulation studies were conducted at different operating conditions such as 

initial state mismatch, model parameter mismatch and different process uncertainties. The result show that for most of the 
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operating conditions, where the change is not large enough, EKF is found to be better and convergence is faster. When 

there is a large difference in parameters between actual process and model, performance of EKF is not satisfactory. It gives 

better performance when there are large process uncertainties. 
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