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ABSTRACT 

In this paper, we study the chaotic model: 

bxaxx  2)(  

where ],4,0[x  1a  and ]4 ,1[ b  is a tunable parameter and adopt the two techniques (i) Lyapunov 

Exponents and (ii) Time-series Analysis, in order to confirm the periodic orbits of periods 20, 21, 22… , as the parameter 

varies in a suitable region  and the existence of the chaotic region.  Finally some enlightening results have been achieved.  
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INTRODUCTION 

 It has long been realized that the responses of many nonlinear dynamical systems do not follow simple, regular, 

and predictable trajectories, but swirl around in a random-like and seemingly irregular, yet well-defined, fashion. As long 

as the process involved is non- linear, even a simple strictly deterministic model may develop such complex behavior.  

This behavior is understood and accepted as chaos [5].  

 A chaotic system is one in which long-term prediction of the system’s state is impossible because the omnipresent 

uncertainty in determining its initial state grows exponentially fast in time. The rapid loss of predictive power is due to the 

property that orbits (trajectories) that arise from nearby initial conditions diverge exponentially fast on the average.  

 Rates of orbital divergence or convergence, called Lyapunov exponents, are clearly a fundamental importance in 

studying chaos. Positive Lyapunov exponents indicate orbital divergence and chaos, and set the time scale on which state 

prediction is impossible.  

 Negative Lyapunov exponents set the time scale on which transients or perturbations of the system’s state will 

decay [1, 2].  

 The key theoretical tool used for quantifying chaotic behavior is the notion of a time series of data for the system 

[7]. Orbit complexity is one of the interesting properties of chaotic systems. Orbit complexity means that chaotic systems 

contain an infinite number of unstable periodic orbits, which coexist with the strange attractor and play an important role in 

the system dynamics [6].  

 However, in many practical situations one does not have access to system equations and must deal directly with 

experimental data in the form of a time series. We now highlight some useful concepts which are absolutely useful for our 

purpose. 
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Discrete Dynamical Systems   

 Any )1( kC k
 map n: UE  on the open set nU R   defines an n-dimensional discrete-time 

(autonomous) smooth dynamical system by the state equation  

                                                  ,.....3,2,1 ),x(x 1  tE tt                                                                                           (1.1)                                            

where n
t x  is the state of the system at time t  and E  maps tx  to the next state 1x t . Starting with an initial data

0x , repeated applications (iterates) of E  generate a discrete set of points (the orbits) ,.....}3,2,1,0:)x({ 0 tE t , 

where   


 times

)x(...)x(
t

t EEEE 
 
[9].      

Definition: A point n*x is called a fixed point of E  if ,x)x( ** mE  for all m . 

Definition: A point n*x is called a periodic point of E  if ,x)x( ** qE  for some integer 1q . 

Definition: The closed set nA is called the attractor of the system (1.1) if (i) there exists an open set AA 0 such 

that all trajectories tx of system beginning in 0A are definite for all 0t and tend to A for t ,that is,

0),xdist( At  for ,t if 00 x A ,where  

yxinf),xdist( y   AA  

is the distance from the point x  to the set ,A  and (ii) no eigensubset of A  has this property.  

Definition: A system is called chaotic if it has at least one chaotic attractor. 

Diffeomorphism:  Let A and B are open subsets of n . A map BAE :  is said to be a diffeomorphism if it is a 

bijection and both E  and 1E  are differentiable mapping. E is called a kC differentiable if both  E  and 1E are 

kC maps.   

Stability Theorem: A sufficient condition for a periodic point x  of period q for a diffeomorphism nnE :  to be 

stable is that the eigenvalues of the derivative )x(qDE  are less than one in absolute value.  Armed with all these ideas 

and concepts, we now proceed to concentrate to our main aim and objectives 

LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL MAPS 

        Let us consider a one-dimensional dynamical system ,...3,2,1 ),;x(1  tbx tt  ., and to 

determine Lyaponuv exponents formally, we begin by considering an attractor point 0x  and a neighboring attractor point 

0x . We then applying the iterated map function ,  n times to each value and considering 
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we expect, if the behavior is chaotic, the above separation to grow exponentially with n. So, we may write 











 





 

)()(
log1 00 xx

n
eD

nn
n

n

 

 where   is the Lyaponuv exponent for the trajectory. If we let 0  and applying the chain rule for differentiation,   

can be put in more intuitive form [52]:  

 ,)(....)(.)(log1)  ( 110  nxxx
n

ctoties two trajence of theof divergeratethe   

where )().....().()( 1100  n
n xxxx ξ   

This implies                                           )(log1 1

0
i

n

i
x

n
  




 

 The value of the Lyapunov exponent may depend on the initial value. So we may think of average Lyapunov 

exponent by taking suitable number of points at a time. With the help of a computer program we follow the above 

procedure to get the Lyapunov exponent.   

       For a particular value of the parameter b, if s
n

ss xxx ,.......,, 21  are n stable periodic points, then the Lyapunov 

exponent )(log1 1

0
i

n

i
x

n
  





, where 0x  is the initial value, becomes )(log
1

s
i

n

i
x 



when 0x  is sufficiently 

close to one of nix s
i ,....,3,2,1 ,  , since  for large value of  n, ,...,....,,, 310 nxxxx  converges to the set 

},...,,{ 21
s
n

ss xxx . This gives ,0  for  

.1)().....().( 21  s
n

ss xxx   

 Thus so long as stable periodic points are there,   will be negative. However if the normal maxima is a part of 

attractor for that particular value of the parameter b, 0)( as ,  s
ix  for some value of i where    has 

maximum value. Now suppose  

b̂  be the bifurcation value and b̂  be a parameter value where n2  stable periodic point occurs. Then as ,0   

,1)()......().( 21   s
n

ss xxx  

  where                                         ,2 ,...... ,0 11
ns

r
ss rxxx    
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are n2  stable periodic points. Therefore,  

.01lim   

)().....().(log

0

21





 
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

s
r

ss xxx
 

Similarly, for b̂  where 12 n  stable periodic point occurs, we have .0  

So,                                                      bbb
ˆ ,0)(lim ˆ  

 
is a bifurcation value.  

LYAPUNOV EXPONENTS FOR OUR MODEL 

       With the help of the results discussed in 1.3 , we have given the calculated values of the Lyapunov exponents for 

some values of the parameter b of our nonlinear chaotic model:  

bxaxx  2)(                            

 where ],4,0[x  1a  and ]4 ,1[ b  is a tunable parameter. For our calculation we have considered 

iteration size of 50000 for getting the values in the Table 1.1 
 

 
Table 1.1 

Parameter 
Values 

Lyapunov 
Exponents 

Parameter 
Values 

Lyapunov 
Exponents 

1 b  -0.00020002 -3.56994 -0.00504841 

2 b  -0.00020241 -3.56995 0.00314049 

3 b  -0.00005441 -3.56996 0.00583025 

4 b  -0.00005671 -3.56998 0.00731921 

5 b  -0.00018183 -3.57000 0.0109609 

6 b  -0.00014147 -3.57200 0.0503521 

7 b  -0.00006973 -3.57400 0.0702857 

8 b  -0.00006810 -3.57600 0.0881221 

       Below we have shown the graph of Lyapunov exponents versus the parameter values between -2.8 to -4.0. 

The main significance of this figure is that one can easily distinguish the regions which are chaotic  ( Lyapunov exponent λ 

> 0 ) from regions which tend to a fixed point or a periodic orbit (i.e. λ < 0). We see several points (the first is at b = -3 

where the Lyapunov exponent hits the horizontal line and then goes negative again. These are the period doubling 

bifurcations. The figure supports the first three bifurcation points as -3.0, -3.44948974278…and -3.54409035955… The 

Lyapunov exponents calculated at the first eight bifurcations points, that is bk (k = 1, 2,….,8), are shown in the first column 

in the Table 1.1, where the Lyaponuv exponent are almost zero.  The first chaotic region appears after the parameter value 

b = -3.56995(approx). Moreover,
 
after the first chaotic region, we observe some portions of the graph are in the negative 
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side of the x-axis. They signify that within the chaotic region also, at certain values of the parameter, there are regular 

behaviors and after that again chaotic region starts. Actually, these are the windows in the chaotic region. 

 

Figure 1.1: Graph of Lyapunov Exponents Versus Parameter B for 9.20.4  b  

 

Period-doubling Cascades [3, 4]: 
 

Period One of the  Periodic Points Bifurcation Points 

1 x1 =2.000000000000… b1 = -3.000000000000… 
2 x2 =1.517638090205… b2 =-3.449489742783… 
4 x3 =2.905392825125… b3 =-3.544090359552… 
8 x4 =3.138826940664… b4 =-3.564407266095… 

16 x5 =1.241736888630… b5 =-3.568759419544… 
32 x6 =3.178136193507… b6 =-3.569691609801… 
64 x7 =3.178152098553… b7 =-3.569891259378… 

128 x8 =3.178158223315… b8 =-3.569934018374… 
256 x9 =3.178160120824… b9 =-3.569943176048… 
512 x10 =1.696110052289… b10 =-3.569945137342… 

1024 x11=1.696240778303… b11 =-3.569945557391… 
… …          …          … …          …          … 

 

Time Series Analysis 
        

In our case, the difference equation is 
 

,.....2,1,0 and  1  ,2
1  nabxxx nnn

 

 On the horizontal axis the number of iterations (‘time’) is marked, that on the vertical axis the amplitude are given 

for each iteration. The graphs of time series analysis are exhibited for showing the existence of different periodic orbits of 

periods 2k, k = 0, 1, 2, … as well as chaotic behavior.  The set towards which the n values converge is called an attractor. 

-3.54409035955...(3rd bifurcation point)
-3.44948974273...(2nd birfurcation point)

-3.0(1st birf. point)

 3.8  3.6  3.4  3.2  3.0

 1.5

 1.0

 0.5

0.5
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 We have seen that an attractor may be a fixed point, a limit cycle, or a chaotic attractor. We look the time series 

graphs in the following figures.  

 

        Figure 1.2: The Time Series Showing Period One Behavior
       

 

 

     Figure 1.3: The Time Series Showing Period Two Behavior 

Time Series Graphs 

        Time series graph at bifurcation points as well as periodic points. In the following figures B.P. and P.Ps. stand for 

Bifurcation point and Periodic points respectively. 

0 10 20 30 40 50
1.6

1.7

1.8

1.9

2.0

2.1

2.2

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value� 2.9, Initial point �2.0

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value� 3.1, Initial point �2.0



Determination of Lyapunov Exponents and Study of Time-Series Graphs on aNonlinear Chaotic Model                7 

 

 

 

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value�1st B.P. Initial point �The fixed point.
Showing period one behavior

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value�2nd B.P. Initial point �One of P.Ps.
Showing period two behavior

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value�3rd B.P., Initial point �One of P.Ps.
Showing period four behavior



8                         Nabajyoti Das & Basistha Ram Bhuyan 

 

 

 

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value�4th B.P., Initial point �One of P.Ps.
Showingperiod eight behavior

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value�5th B.P., Initial point �One of P.Ps.
Showing period sixteen behavior

0 10 20 30 40 50

1.0

1.5

2.0

2.5

3.0

3.5

No. of iterations

Ite
rat

ed
va

lu
es

Parameter value� 3.7., Initial point �1.6
Showing chaotic behavior



Determination of Lyapunov Exponents and Study of Time-Series Graphs on aNonlinear Chaotic Model                9 

       If we start with a value of b just less than b1, successive points converges to a fixed point with an initial non-zero 

value of x. But for values of b slightly greater than b1 the fixed point ‘bifurcates’ forming a periodic orbit of period of 

period-2. This bifurcates again, that is, the period doubles at the large value of b to a periodic orbit of period-4 and so on. 

In this way, as b increases the period continues to double at successively closer and closer value of b until we get chaotic 

behavior. This phenomenon can be continued up to the value of  b = -3.56994 (approx). After that a chaotic attractor 

appears.  
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