International Journal of Applied . .
Mathematics & Statistical Sciences (IJAMSS) % Inte.rnatnf:nal Academv of Science,
ISSN: 2319-3972 & - Engineering and Technology
Vol.1, Issue 2 Nov 2012 37-49 . i ; ;

’ ( cering Researchers; N x | i
© IASET Iﬂ-s E-I- onnecting Reseanchers: urturing Innovations

SECONDARY FLOW OF TWO IMMISCIBLE LIQUIDS IN A ROTATING ANNULAR PIPE
OF CIRCULAR CROSS SECTION

T. POORNA KANTHA, 2A.S.N. MURTI & *V.V. RAMANA RAO

LAssistant Professor, Department of Mathematics, GITAM Institute of Technology, GITAM University,
Visakhapatnam, India

2professor, Department of Mathematics, GITAM Institute of Technology, GITAM University, Visakhapatnam, India
*Professor(Retd), Department of Applied Mathematics, Andhra University, Visakhapatnam, India

ABSTRACT

Ramana Rao and Narayana (1981) studied the flow of two incompressible immiscible liquids occupying equal
heights between two parallel plates in a rotating system under the action of constant pressure gradient. They also studied
the associated thermal distribution, assuming equal and different plate temperatures. This branch of fluid mechanics has
developed rapidly in recent times as an obvious consequence of interest in geophysical flow problems, earth’s atmosphere,
oceans and core and of stars and galaxies. We considered the flow of two incompressible immiscible fluids occupying
equal heights in rotating circular pipe. Immiscible fluids we mean, superposed fluids of different densities and viscosities.
The rotating pipe that we consider here has the following physical meaning. If we introduce a pipe in a rotating flow, for

example, rotating flow due to earth’s rotation, the pipe also rotates.
KEYWORDS: Pressure gradient, Flux

INTRODUCTION

This sets up the primary and secondary flows. Ramana Rao and Narayana (1981) suggested that olive oil and
water can be taken as two immiscible liquids to test their theoretical conclusions for setting up an experiment.The
uniqueness for two immiscible fluids in one-dimensional porous medium was studied by Baiocchi, Evans, Lawrence C,
frank, Leonid, Friedman, Anver (1980). Patrudu (2001) studied the laminar flow of two incompressible immiscible liquids
under a constant pressure gradient through a channel of circular cross section in a rotating straight pipe, rotating with a
uniform angular velocity about an axis perpendicular to the channel. This problem was later extended by Sivarama Prasad

(2006) for the hydro magnetic case.

The flow of two incompressible, immiscible liquids through a straight pipe in the annular region bounded by two

concentric circles of radii ea and a, &€ < 1, under two constant pressure gradients, occupying equal heights is considered.

BASIC EQUATIONS AND THEIR NON DIMENSIONAL FORM

We consider the steady laminar flow of two incompressible liquids under the action of constant pressure gradient

through a channel of arbitrary cross section rotating with a uniform angular velocity about an axis perpendicular to the

channel. The equations of motion in steady state flow, relative to a set of rectangular Cartesian coordinates r=r o yh

") rotating with a constant angular velocity Q’ with respect to an inertial system are
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For fully developed laminar flow, the form of =’ is restricted to
n=-cz +F(r.0) 1.7

where ‘¢’ is a constant and may be termed as the gradient of i’ along the axis of the pipe.
The above equations are the equations of motion of a viscous incompressible liquid characterized by viscosity v;

and density p, occupying the space between r' = a e and r = a in the circular pipe for the upper liquid. Here (u’y, Vv'4,

w’;) are the components of the velocity in the direction of (r’,0, z’) where ‘0’ is the angle between the radius and the axis

of rotation and z* is measured from the axis of the pipe.

The corresponding equations for the lower liquid occupying the space between r’ =0tor’ = a e of the circular pipe, are

J’_

o' r 06 r

-2p, Q'w, sin 6+p2(u‘2

=- 6—7T+pzv2 [V'Z u-z_u_z_iﬂj (1.8)
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where i’ =P’ - %pz Q% (r’sin?6+12'"%)

For the upper liquid, we introduce the stream function ¢ such that

ru’y = 9
00
V’l == a¢ll
or'

where ¢’ is a function of r’ and 6 only. Eliminating =’ from (1.1)

and (1.2) we get

1 1 1 1 1 1
-2Q (D*W1)+Fa (¢1,V2¢1)=V1V4¢1
Using eq. (1.13) in eq. (1.3), we get

] 1 ] 1 12
-2Q (D*¢1)+Fa (¢, W)=V, V7w,

o0 sin@ o

where D« = €00 — ———— —

o' r 06
And O (X, Y) stands for the Jacobian of X and Y with respect to r’ and 0

respectively.

a(X,Y)

ie. J(X,Y)= D)

For the lower liquid following similar analysis, we get
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In terms of the non dimensional variables,
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where “c’ is the pressure gradient, Ry, R, stand for the Reynolds numbers of the upper and lower liquids respectively, T;

and T are the Taylor numbers for these liquids respectively, we get for

Upper Liquid
R 1 1 2
T, (D*¢1)+?a (@', W,)=4+Vw, (1.21)
R
-T, (D*W1)+?8 (9',,V?¢)= V¢ (1.22)
Lower Liquid
RZ 1 1 2
T, (D*¢2)+Ta(¢2,w2)=4+v W, (1.23)
RZ 1 2 4
_Tz (D*\Nz)"'Ta (¢2 vV ¢2): \4 ¢2 (1.24)
where D*:coseai - M% (1.25)
r r

and when k = 1 the pressure gradient is same for both the liquids. For different values of k, the pressure gradient is varied.
Boundary Conditions

To find the solutions for Wi, ¢1, W2, ¢, we use the following boundary conditions given in non dimensional form,
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0
atr=1, W; =0and ail=¢l=o
r

atr=e,W,=0and %:4)2:0
or

atr=b, (line between € and 1 i.e. € <b<1)

_l% = —l% Y a_¢1 = %,lewz
r or r or or or

W, =L5W2 where Lzﬁ

or or H,

Method of Solution

For the upper liquid, we assume
2
(])1 = T1¢11 + Tl (])12 + .

Wi =Wy + TiWyy + le Wy +.....
For the lower liquid, we assume

Oo = Tobor + T, o+ oo

W, = Who + ToWoy + T2 Wap +.....

Solutions
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(1.26)

1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

Substituting equations (1.29) and (1.30) in equation (1.21) & equations (1.31) and (1.32) in equation (1.23) and to

the zeroth power in both T, and T,, we get
VZW]_O =-4

VAW,0=-4 K

which are to be solved with the appropriate boundary conditions to this approximation, namely

Wp=0atr=1
Wi =Wyatr=c¢
Mo _ LaW—20 atr="b
or or
and Wy =0atr= €
On solving egs. (1.33 ) and ( 1.34 ), we get
Wy =C; + C, logr — r?

Wy =C3+Cy Iogr - krz

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)
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where

o . L+b?(2logb—1)—kb* (2L logb ~1) —k &’
) (1-L)logh—-log e

Cs=ke?-C, log €
C; = LC,4 — 2kLb? + 20
Ci=1
To the first order approximation in T, and T, , using the expressions (1.22 ),
(1.24),(1.36)and (1.37) for wyoand w, we get
for the upper liquid
V* ¢ = -D « Wy
and for the lower liquid
V* o1 = -D « Wy

where D « = cos0 E—Wi

or r o0

Cos8
r

D«Wy=C, —2rcos 6

Cos@

D*Wzo:C4 —ZKFCOSG

These are to be solved subject to the conditions

at r=1L,Wy=0, ¢p=0 and —a¢11 =0
or
at r=e, Wx=0,¢2=0 and 99n =0
or
at r=n, _1%:_16%1
r or r or
- 6(/511 - a¢21 Wyt = Way anl -L aWZl
or or Coor or
and writing

(1 = gu(r) coso

(P21 = Ga1(r) coso

in egs. (1.38), (1.39) we get
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(1.39)
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(1.42)

(1.43)
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To the first order of approximation in T, and T, from equations (1.21) and

(1.23), we get

R
Vawy = Tla(¢11’W10) (1.46)

R
VoW = Tza(¢21’ W) (1.47)

Using the expressions for ¢11, ¢n1, W1g, Wy from equations

(1.43), (1.40) and (1.41) in egs. (1.46), (1.47) we get

VAW, = % {(C2 -2r? )gll(r)sin 0} (1.48)
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The boundary conditions on wy; and w,; are

at r=1,w; =0

oW
at r= b, W11 =\ Wo1, — - 7\.L_21
or or
at r=e,wy=0, (1.50)
T
and A= —%.
Tl
Solving equations (1.48) and (1.49), we get
Wi = hll(r) sind
W= h21(r) sind
where (1.51)
Ap R 3 5
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r 96
2 Iog r 3 5 7
Aqar (logr)” +Ass + Al + A+ A '} (1.52)
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DISCUSSIONS OF THE STREAMLINES IN THE CENTRAL PLANE

T 3 . .
In the central plane perpendicular to the axis of rotation 6 zaor 7 , it can be seen that from the equations

(1.43), v' = 0 in either case. So a particle of liquid once in this plane does not leave it in the subsequent motion. The motion

in the two halves of the pipe is therefore quite distinct from each other.

The differential equation of the streamlines in the central plane of the pipe is

1 1
dy_ — dZ_ (e — 1 or 31)
du'  dw'’ 2 2
(1.54)
1 1 1
dzt = W c:r where u' = —il% (1.55)
u r- 00
dzl—L whereg,, =g,,(r)coséd (1.56)
- 1 §¢1 1 =09n :

rt 66
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rw ,dr _rwo,dr

T,dz = =
2 ~ g, (-sin o) g,sino

rw ,, + T,w, )dr
g, sin 6

rw ,, + T,w,, )dr

179; (A sr> + Agrilogr + Agr® + 2kr ® —12c ,r*cos )

_ 192r 2 (W 5, + T,w ,, )dr
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To a sufficient approximation these streamlines for the lower liquid are given by

T,(2'-2;) = 1;2 e +Lr°+1,-1,]

7
where

3k €* -3¢, €’ log e —,

I, =

9
| ~ —5kA, —BkA, € +5KAC, log e +Ac, + KA, €°
2 - 25A,
c,rilogr
, = 9T
3
| _ A.c,r’logr
o 5A,
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(1.57)

(1.58)

and z, is a constant of integration which is different for different stream lines and equal to the distance of the point r=0 on

the curve from the axis of rotation.

Values of T,(z" —z;)fore=05b=0.75

r T,(z' - z3)
0.75 0.19313
08 1.11275
0.85 2.64434
0.90 5.00022
0.95 8.43429
1.0 0

Values of T, (z" —z3)for e=05b=0.75
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r T,(z' —z,)
0.1 0.01633
0.2 0.10848
03 0.26647
0.4 0.52794
05 0.87765

To a sufficient approximation these streamlines for the upper liquid are given by

3
T -7) - %{r

c
—+lr*+=22r3logr+l.rélogr 1.59
A3 3 g ¢ 109 (1.59)

where

B A1 B A3
5A,
_ - A1C2 - Az
- 5A,

Table shows the same stream line in the plane of symmetry for € =0 and € =1. We note that no stream line in the
central plane ever reach the edge of the pipe. As the angular velocity Q is increased, the distance which must be covered by
the central stream line to be within a given distance from the edge gets smaller., this results holds good for all values of €

between 0.5 and 1.

For a fixed value of T,, the effect of decreasing ¢ from unity to 0.5, is to increase the distance that the liquid
particle in the central plane travel in going from points near edge of the pipe i.e., r=0 to points r= &. The similar conclusions

can be drawn for the upper liquid also.

STREAM LINES OF THE SECONDARY FLOW

To the first order of approximation in T, and T, the equation for the projection of the stream lines on the cross

section of the channel for the upper liquid is given by 192000 g, cosd = k.

Figure gives the projection of the stream lines on the cross section of the channel when €= 0.5 for some values of k.
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Fig 2.1 PROJECTION OF THE STREAM LINES ON THE UPPER CROSS SECTION OF THE CHANNEL

CONCLUSIONS

The stream line pattern in the central plane of the pipe has been discussed and the pattern of general stream lines
for both upper and lower liquids have been obtained and shown graphically also. For different values of k, we get a set of
closed curves which are symmetrical about the axis of rotation 6= 0. For an equal and opposite value of k, the curves in the

lower half are obtained by the reflection of the curves on the diameter of the cross section perpendicular to the axis of

rotation. The upper half of the cross section is divided into two regions by a circle of radius r=r*, which corresponds to a

stream line when k= 0. The other branches of the curve with k= 0 are the peripheries of the channel r=¢, r= 1 and the parts

. 7[ . . . * - -
of the axis 6= * —between two peripheries. In the region I (¢ < r < r ), the stream lines are obtained as k assumes

negative values between 0 and minimum value kl(corresponding to the degenerate stream line for r=r . ). In the region Il

min
(r*<r<1), the stream lines are obtained as k assumes positive values between 0 and maximum value k”( corresponding

to the degenerate stream lines for r=r ). At these degenerate points, both the radial and transverse components of

max

velocity in the cross section vanish. Thus the stream lines of motion through the points (r .., 0), (r ..., 0), (" pin» 72),

max + 77 ) are straight lines and the motion in opposite directions about two pairs of straight lines. It is found for = 0.5, r

=0.79, kl= -0.02404,r*=0.87,r __=0.96, k= 0.00003. The figure gives the projection of the stream lines on the cross

max

section of the channel when &= 0.5 for some values of k. Similarly for the lower liquid it is found that for &= 0.5, r ; =

0.0.64, k'=-0.02404, r*=0.523, r __=0.74, k* = 0.00003.

77 max
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